首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1569篇
  免费   148篇
  国内免费   16篇
  2024年   1篇
  2023年   17篇
  2022年   12篇
  2021年   48篇
  2020年   71篇
  2019年   93篇
  2018年   64篇
  2017年   59篇
  2016年   37篇
  2015年   43篇
  2014年   84篇
  2013年   127篇
  2012年   71篇
  2011年   88篇
  2010年   61篇
  2009年   79篇
  2008年   71篇
  2007年   85篇
  2006年   74篇
  2005年   43篇
  2004年   58篇
  2003年   41篇
  2002年   44篇
  2001年   27篇
  2000年   34篇
  1999年   22篇
  1998年   42篇
  1997年   28篇
  1996年   24篇
  1995年   23篇
  1994年   26篇
  1993年   23篇
  1992年   28篇
  1991年   10篇
  1990年   14篇
  1989年   15篇
  1988年   8篇
  1987年   7篇
  1986年   4篇
  1985年   6篇
  1984年   5篇
  1983年   8篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
排序方式: 共有1733条查询结果,搜索用时 17 毫秒
1.
Great skepticism has surrounded the question of whether modulation of voltage-gated Ca2+ channels (VGCCs) by the polyunsaturated free fatty acid arachidonic acid (AA) has any physiological basis. Here we synthesize findings from studies of both native and recombinant channels where micromolar concentrations of AA consistently inhibit both native and recombinant activity by stabilizing VGCCs in one or more closed states. Structural requirements for these inhibitory actions include a chain length of at least 18 carbons and multiple double bonds located near the fatty acid's carboxy terminus. Acting at a second site, AA increases the rate of VGCC activation kinetics, and in CaV2.2 channels, increases current amplitude. We present evidence that phosphatidylinositol 4,5-bisphosphate (PIP2), a palmitoylated accessory subunit (β2a) of VGCCs and AA appear to have overlapping sites of action giving rise to complex channel behavior. Their actions converge in a physiologically relevant manner during muscarinic modulation of VGCCs. We speculate that M1 muscarinic receptors may stimulate multiple lipases to break down the PIP2 associated with VGCCs and leave PIP2's freed fatty acid tails bound to the channels to confer modulation. This unexpectedly simple scheme gives rise to unanticipated predictions and redirects thinking about lipid regulation of VGCCs.  相似文献   
2.
Abstract

The antioxidant effects of ellagic acid (EA) and hesperidin (HES) against skeletal muscle ischemia/reperfusion injury (I/R) were performed. Hindlimb ischemia has been induced by tourniquet occlusion for 2?h on left hindlimb. At the end of ischemia, the tourniquate has been removed and initiated reperfusion for 2?h. EA (100?mg/kg) has been applied orally before ischemia/reperfusion in the EA?+?I/R group. HES (100?mg/kg) has been given orally in the HES?+?I/R group. The left gastrocnemius muscle has been harvested and stored immediately at??80?°C until assessed for the levels of MDA and antioxidant enzymes activities. MDA level has statistically increased in I/R group (p?<?0.05) compared to other groups. The muscle tissue antioxidant enzymes activities were lower than the other groups in the I/R group (p?<?0.05). EA and HES treatments significantly reversed the damage level in I/R, also activity of tissue SOD increased in the EA?+?I/R and HES?+?I/R groups.  相似文献   
3.
Ex vivo lung perfusion (EVLP) has recently shown promise as a means of more accurately gauging the health of lung grafts and improving graft performance post-transplant. However, reperfusion of ischemic lung promotes the depletion of high-energy compounds and a progressive loss of normal mitochondrial function, and it remains unclear how and to what extent the EVLP approach contributes to this metabolic decline. Although ascorbate has been used to mitigate the effects of ischemia–reperfusion injury, the nature of its effects during EVLP are also not clear. To address these uncertainties, this study monitored the energy status of lungs during EVLP and after the administration of ascorbate using 31P and hyperpolarized 13C NMR (nuclear magnetic resonance). Our experiments demonstrated that the oxidative phosphorylation capacity and pyruvate dehydrogenase flux of lungs decline during ex vivo perfusion. The addition of ascorbate to the perfusate prolonged lung viability by 80% and increased the hyperpolarized 13C bicarbonate signal by a factor of 2.7. The effect of ascorbate is apparently due not to its antioxidant quality but rather to its ability to energize cellular respiration given that it increased the lung’s energy charge significantly, whereas other antioxidants (glutathione and α-lipoic acid) did not alter energy metabolism. During ascorbate administration, inhibition of mitochondrial complex I with rotenone depressed energy charge and shifted the metabolic state of the lung toward glycolysis; reenergizing the electron transport chain with TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) recovered metabolic activity. This indicates that ascorbate slows the decline of the ex vivo perfused lung’s mitochondrial activity through an independent interaction with the electron transport chain complexes.  相似文献   
4.
Mitochondrial respiratory function, assessed from the rate of oxygen uptake by homogenates of rat brain subregions, was examined after 30 min of forebrain ischemia and at recirculation periods of up to 48 h. Ischemia-sensitive regions which develop extensive neuronal loss during the recirculation period (dorsal-lateral striatum, CA1 hippocampus) were compared with ischemia-resistant areas (paramedian neocortex, CA3 plus CA4 hippocampus). All areas showed reductions (to 53-69% of control) during ischemia for oxygen uptake rates determined in the presence of ADP or an uncoupling agent, which then recovered within 1 h of cerebral recirculation. In the ischemia-resistant regions, oxygen uptake rates remained similar to control values for at least 48 h of recirculation. After 3 h of recirculation, a significant decrease in respiratory activity (measured in the presence of ADP or uncoupling agent) was observed in the dorsal-lateral striatum which progressed to reductions of greater than 65% of the initial activity by 24 h. In the CA1 hippocampus, oxygen uptake rates were unchanged for 24 h, but were significantly reduced (by 30% in the presence of uncoupling agent) at 48 h. These alterations parallel the development of histological evidence of ischemic cell change determined previously and apparently precede the appearance of differential changes between sensitive and resistant regions in the content of high-energy phosphate compounds. These results suggest that alterations of mitochondrial activity are a relatively early change in the development of ischemic cell death and provide a sensitive biochemical marker for this process.  相似文献   
5.
Summary The precise role of eicosanoids in the development of myocardial injury during ischemia and reperfusion is still a matter of debate. Enhanced local production of these bioactive compounds appears to be a common response to tissue injury. Most likely, the cardiac tissue has the capacity to generate prostaglandins, thromboxanes as well as leukotrienes. Prostacyclin (PGI,) is the major eicosanoid produced by the jeopardized myocardium. In addition, at sites of tissue injury activation of platelets and infiltrating leukocytes results in the formation of considerable amounts of thromboxanes and leukotrienes. The production of eicosanoids requires prior release of arachidonic acid (AA) from phospholipids. Both ischemia and reperfusion are associated with a rise in the tissue level of AA. The absence of a proportional relationship between the tissue level of AA and the amounts of PGI, produced suggests that the sites of AA accumulation and PGI2 formation are different. It is conceivable that AA accumulation is mainly confined to myocytes, whereas the capacity to synthesize PGI, mainly resides in vascular cells. Both beneficial and detrimental effects of eicosanoids on cardiac tissue have been described. Prostaglandins act as vasodilators. Besides, some of the prostaglandins, especially PGI,, are thought to possess cyto-protective properties. Thromboxanes and leukotrienes may impede blood supply by increasing smooth muscle tone. Besides, leukotrienes augment vascular permeability. Experimental studies, designed to evaluate the effect of pharmacological agents, like PGI2-analogues and lipoxygenase and cyclo-oxygenase inhibitors, indicat that eicosanoids influence the outcome of myocardial injury. However, the delineation of the physiological significance of the locally produced eicosanoids is complicated by such factors as the wide variety of AA derivatives produced and the dose-dependency of their effects.  相似文献   
6.
During the reductive process in the tissues, the aerobes generate a number of oxidants. Unless these oxidants are reduced, oxidative damage and cell death would occur. Oxidation of plasma membrane lipids leads to autocatalytic chain reactions which eventually alter the permeability of the cell. The role of oxidative damage in the pathophysiology of diabetic complications and ischemic reperfusion injury of myocardium, especially the changes in the channel activity which may lead to arrhythmia have been studied. Hyperglycemia activates aldose reductase which could efficiently reduce glucose to sorbitol in the presence of NADPH. Since NADPH is also aldose required by glutathione reductase for reducing oxidants, its diversion would lead to membrane lipid oxidation and permeability changes which are probably responsible for diabetic complications such as cataractogenesis, retinopathy, neuropathy etc. Antioxidants such as butylated hydroxy toluene (BHT) and also reductase inhibitors prevent or delay some of these complications. By using patch-clamp technique in isolated frog myocytes, we have shown that hydroxy radicals generated by ferrous sulfate and ascorbate as well as lipid peroxides such as t-butyl hydroperoxide facilitate the entry of Na+ by oxidizing Na+-channels. Increased intracellular Na+ leads to an increase in Na+/Ca2+ exchange. The increased Na+ concentration by itself may produce electrical disturbance which would result in arrhythmia. Increased Ca2+ may affect proteases and may help in the conversion of xanthine dehydrogenase to xanthine oxidase, consequently increased production of super oxide radicals. Increased membrane lipid peroxidation and other oxygen free-radical associated membrane damage in myocytes has been demonstrated.  相似文献   
7.
中学寒  贺妙湘 《生理学报》1990,42(4):307-315
在狗的心脏上装入微超声探头和高精度微压力传感器,手术后两星期,在清醒状态下给予左冠状动脉旋支阻断三分钟。在复灌注过程中,观察到血液动力学指标与收缩期心室壁厚度(WT)迅速恢复正常;但在 dWT/dt—WT 环形图上出现舒张早期异常相,其形状与缺血过程不同。低氧和急遽冠状动脉过度充盈可以产生此种异常图形。我们推测,心肌缺血可能促使一些产物的形成,复灌注时它使冠脉过度舒张,冠脉灌注增加,从而造成舒张早期急遽充盈而形成了此种异常的形图。  相似文献   
8.
Incubation of horse-heart oxymyoglobin or metmyoglobin with excess H2O2 causes formation of myoglobin(IV), followed by haem degradation. At the time when haem degradation is observed, hydroxyl radicals (.OH) can be detected in the reaction mixture by their ability to degrade the sugar deoxyribose. Detection of hydroxyl radicals can be decreased by transferrin or by OH scavengers (mannitol, arginine, phenylalanine) but not by urea. Neither transferrin nor any of these scavengers inhibit the haem degradation. It is concluded that intact oxymyoglobin or metmyoglobin molecules do not react with H2O2 to form OH detectable by deoxyribose, but that H2O2 eventually leads to release of iron ions from the proteins. These released iron ions can react to form OH outside the protein or close to its surface. Salicylate and the iron chelator desferrioxamine stabilize myoglobin and prevent haem degradation. The biological importance of OH generated using iron ions released from myoglobin by H2O2 is discussed in relation to myocardial reoxygenation injury.  相似文献   
9.
The purpose of this study was to explore the role of singlet oxygen in cardiovascular injury. To accomplish this objective, we investigated the effect of singlet oxygen [generated from photoactivation of rose-bengal] on the calcium transport and Ca2+-ATPase activity of cardiac sarcoplasmic reticulum and compared these results with those obtained by superoxide radical, hydrogen peroxide and hydroxyl radical. Isolated cardiac SR exposed to rose bengal (10 nM) irradiated at (560 nm) produced a significant inhibition of Ca 2+ uptake; from 2.27 ± 0.05 to 0.62 ± 0.05 µmol Ca+/mg.min (mean ± SE) (P < 0.01) and Ca2+-ATPase activity from 2.08 ± 0.05 µmol Pi/min. mg to 0.28 ± 0.04 µmol Pi/min. mg (mean ± SE) (P < 0.01). The inhibition of calcium uptake and Ca2+-ATPase activity by rose bengal derived activatedoxygen (singlet oxygen) was dependent on the duration of exposure and intensity of light. The singlet oxygen scavengers ascorbic acid and histidine significantly protected SR Ca2+-ATPase against rose bengal derived activated oxygen species but superoxide dismutase and catalase did not attenuate the inhibition. SDS-polyacrylamide gel electrophoresis of SR exposed to photoactivated rose bengal up to 14 min, demonstrated complete loss of Ca2+-ATPase monomer band which was significantly protected by histidine. Irradiation of rose bengal also caused an 18% loss of total sulfhydryl groups of SR. On the other hand, superoxide (generated from xanthine oxidase action on xanthine) and hydroxyl radical (0.5 mM H2O2 + Fe2+ -EDTA) as well as H2O2 (12 mM) were without any effect on the 97,000 dalton Ca2+-ATPase band ofsarcoplasmic reticulum. The results suggest that oxidative damage of cardiac sarcoplasmic reticulum may be mediated by singlet oxygen. This may represent an important mechanism by which the oxidative injury to the myocardium induces both a loss of tension development and arrhythmogenesis.  相似文献   
10.
A short period of global ischemia results in the death of selected subpopulations of neurons. Some advances have been made in understanding events which might contribute to the selectivity of this damage but the cellular changes which culminate in neuronal death remain poorly defined. This overview examines the metabolic state of tissue in the post-ischemic period and the relationship of changes to the development of damage in areas containing ischemia-susceptible neurons. During early recirculation there is substantial recovery of ATP, phosphocreatine and related metabolites in all brain regions. However, this recovery does not signal restitution of normal energy metabolism as reductions of the oxidative metabolism of glucose are seen in many areas and may persist for several days. Furthermore, decreases in pyruvate-supported respiration develop in mitochondria from at least one ischemia-susceptible region at times coincident with the earliest histological evidence of ischemia-induced degeneration. These mitochondrial changes could simply be an early marker of irreversible damage but the available evidence is equally consistent with these contributing to the degenerative process and offering a potential site for therapeutic intervention.Submitted as an Overview article for the volume of Neurochemical Research in honor of Alan N. Davison.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号